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OPTIMAL MOVING GRIDS FOR TIME-DEPENDENT PARTIAL DIFFERENTIAL 

EQUATIONS. A. J. Wathen. RIACS, NASA Ames Research Center, 
Ames, Iowa 50010, USA. 

Various adaptive moving grid techniques for the numerical solution of 
time-dependent partial differential equations have been proposed. The 
precise criterion for grid motion varies, but most techniques will attempt to 
give grids on which the solution of the partial differential equation can be 
well represented. We investigate moving grids on which the solutions of the 
linear heat conduction and viscous Burgers’ equation in one space dimen- 
sion are optimally approximated. Precisely, we report the results of 
numerical calculations of optimal moving grids for piecewise linear finite 
element approximation of PDE solutions in the least-squares norm. 

A DISCRETE MULTIPLE SCALES ANALYSIS OF A DISCRETE VERSION OF THE 

KORTEWEGDE VRIES EQUATION. S. W. Schoombie. University of the 
Orange Free State, Bloemfontein, South Africa. 

A more elaborate discrete multiple scales analysis than that used by 
Newell in 1977 is performed on the Zabusky-Kruskal discretization of 
the Korteweg-de Vries (KdV) equation. This eventually leads to a set of 
partial difference equations describing the modulational behavior of a 
small harmonic wave modulated by a slowly varying envelope. In the case 
of certain modes of the carrier wave, the multiple scales analysis breaks 
down, indicating that in these cases the numerical solution deviates in 
behavior from that of the KdV equation. Numerical experiments are 
reported which confirm this. 

A NUMERICAL ENERGY CONSERVING METHOD FOR THE DNLS EQUATION. 
Tor FU Institute of Mathematical and Physical Sciences, University 
of Tromsp, P.O. Box 953, N-9001 Tromsti, Norway. 

An implicit, numerical energy conserving method is developed for the 
derivative nonlinear Schrijdinger (DNLS) equation for periodic 
boundary conditions. We find no numerical high frequency modulational 
instabilities in addition to the modulational instability from a linear 
analysis around a nonlinear state for the DNLS equation if the modula- 
tion is small and (k,-a2/2)% cn (k, is the wavenumber and a the 
amplitude). The numerical scheme is used to follow the nonlinear 
behavior of the DNLS modulational instability. The numerical code is 
also tested by the evolution for one soliton initial data. These tests show 
that if the modulation is not small compared to the background wave 
amplitude, new nonlinear numerical instabilities are introduced. 

A RELAXATION ALGORITHM FOR CLASSICAL PATHS AS A FUNCTION OF END 
POINTS: APPLICATION TO THE SEMICLASSICAL PROPAGATOR FOR 

FAR-FROM-CAUSTIC AND NEAR-CAUSTIC CONDITIONS. A. G. Basile. 
Laboratory of Atomic and Solid State Physics, Cornell University, 
Ithaca, New York 14853-2501, USA; C. G. Gray. Guelph-Waterloo 
Program for Graduate Work in Physics, University of Guelph, 
Guelph, Ontario, Canada NIG 2 WI. 

We present a relaxation algorithm for obtaining the classical and non- 
classical paths from the boundary value problem with fixed initial and 
final positions and times on the path, and we discuss a technique for 
obtaining all paths connecting a given set of end points. From these 
paths, the action and other essential quantities entering the far-from- 
caustic and near-caustic expressions for the semiclassical propagator can 
he obtained. We illustrate with three one-dimensional examples-a time- 
dependent harmonic oscillator, a double-well anharmonic oscillator, and 
the repulsive l/x* potential-and find good agreement between the 

numerically calculated and exact paths where analytical results are 
available for comparison. We also find surprisingly good agreement 
between the semi-classical propagator and the exact propagator in case 
where the latter is available for comparison. 

AN ADAPTIVE MESH REHNEMENT METHOD FOR NONLINEAR DISPERSIVE 

WAVE EQUATIONS. Eric S. Fraga. University of Waterloo, Waterloo, 
Ontario, Canada NZL 3GI; John Ll. Morris. University of Dundee, 
Dundee DDl 4HN, Scotland. 

Adaptive mesh refinement techniques are often essential for solving 
nonlinear partial diflerential equations numerically. A new method for 
spatial grid refinement is developed and implemented. Several numerical 
experiments are performed to compare the method with results obtained 
using a uniform grid. The new method has the following properties: it is 
simple to implement and requires little modification of existing code to 
use; the solutions achieved as a result of using these methods prove to be 
accurate; and, the stability of the numerical methods is affected mini- 
mally. The effect of the grid refinement on essential properties of some of 
the equations, such as conservation, is minimized through the use of 
piecewise uniformity. 

ON MULTIGRLD SOLUTION OF HIGH-REYNOLDS INCOMPREZWBLE ENTERING 

FLOWS. A. Brandt. The Weizmann Institute of Science, Rehovot 
76100, Israel; I. Kavneh. Center for Nonlinear Studies and T-7, 
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, 
USA, and The Weizmann institute of Science, Rehovot 76100, Israel, 

An approach is presented for effectively separating the solution process 
of the elliptic component of high-Reynolds incompressible steady enter- 
ing flow, for which classical multigrid techniques are well-suited, from 
that of the non-elliptic part, for which other methods are more effective. 
It is shown by analysis and numerical calculations that such an approach 
is very effective in terms of asymptotic convergence as well as reduction 
of errors well below discretization level in a 1FMG algorithm. 

BOUNDARY CONDITIONS FOR DIRECT SIMULATIONS OF COMPREWBLE 

VISCOUS FLOWS. T. J. Poinsot. Center for Turbulence Research, 
Stanford University, Stanford, California 94305, USA ; S. K. Lele. 
NASA Ames Research Center, Moffett Field, California 94305, USA. 

Procedures to define boundary conditions for Navier-Stokes equations 
are discussed. A new formulation using characteristic wave relations 
through boundaries is derived for the Euler equations and generalized to 
the Navier-Stokes equations. The emphasis is on deriving boundary 
conditions compatible with modern non-dissipative algorithms used 
for direct simulations of turbulent flows. These methods have very low 
dispersion errors and require precise boundary conditions to avoid 
numerical instabilities and to control spurious wave reflections at the 
computational boundaries. The present formulation is an attempt to 
provide such conditions. Reflecting and non-reflecting boundary condition 
treatments are presented. Examples of practical implementations for inlet 
and outlet boundaries as well as slip- and no-slip walls are presented. 
The method applies to subsonic and supersonic flows. It is compared 
with a reference method based on extrapolation and partial use of 
Riemann invariants. Test cases described include a ducted shear layer, 
vortices propagating through boundaries, and Poiseuille flow. Although 
no mathematical proof of well-posedness is given, the method uses the 
correct number of boundary conditions required for well-posedness of 
the Navier-Stokes equations and the examples reveal that it provides a 
significant improvement over the reference method. 


